Our service offer

  • + Bionics & light-weight engineering
  • + Sustainable material concepts
  • + Implementation during development
  • + Education & consulting
Designing the future
Sustainable development process

Where do we start? Product development


Strong, reliable processes and decades of expertise in product development characterize us as BUSSE Design+Engineering. As part of our 60th anniversary we already identified points in our development process where sustainability can be implemented. From the kick-off and initial conception phase, through component optimization in design to the selection of suppliers and ecologically reasonable materials and production methods, we see potential for sustainable development in every step of the design process. This also includes the tools and methods that we use today, as we want to modify or expand them under sustainable aspects as well.

We try to support the following desirable goals that go beyond everyday product development:
+ A reflected selection of materials, its use, production method and location
+ Non-destructive disassembly and easy recycling of products
+ Modular construction
+ A sensible maintenance and repair capability for longlivity of products
+ Promotion of incentive systems for promoting environmentally conscious, extended usage behavior

Design criteria at BUSSE

The new design criteria of BUSSE

No other design company embodies the perfect harmonization of competing requirements like manufacturability, production costs and function in contrast to the brand-specific and target group-oriented aesthetics as well as optimal usability like BUSSE. These design criteria were formulated by Rido Busse as early as 1959 and highlight the topics of connectivity and smartness, as well as the important terms „SECURING THE FUTURE" and „SUSTAINABILITY".

Sustaining values, companies and environments


We have always striven for a "long-lasting effect" with our customers, both in the individual products, as well as in the entire brand and the mutual relationship with our customer and its end users. We preserve these values and plan on strengthening them in the future. For us and our customers, we continue to strive for a successful market existence in the respective sectors, without missing any innovations or significant changes in technology - while at the same time offering volatile stability in the balance between "tried and true" products  and the newest "trends of the future".

UN sustainability goals


We are fully commited tp create a "sustainable" company with a "sustainable" product development process. This includes the use of resources, the choice of materials and service aspects, as well as incorporating concepts that adequately represent the environmental definition of sustainability. This is a global challenge which will continue to grow in importance, why we aim to balance the requriements of this development with current and future market conditions by viewing them in a global context.

Linear Economy
Circular Economy

Circular economy

The German CIRCULAR ECONOMIC ACT (KrWG) and the EU ACTION PLAN CIRCULAR ECONOMY encourage and demand for more recycling and less waste. We rely on our material competences as well as a sensible assembly and housing concepts to support our customers in the profitable prevention of waste and recyclability of their products.

"Better design can make products more durable or easier to repair, upgrade or remanufacture."

EU action plan

"1.1. PRODUCT DESIGN - Better design can make products more durable or easier to repair, upgrade or remanufacture. It can help recyclers to disassemble products in order to recover valuable materials and components. Overall, it can help to save precious resources. However, current market signals appear insufficient to make this happen, in particular because the interests of producers, users and recyclers are not aligned. It is therefore essential to provide incentives for improved product design, while preserving the single market and competition, and enabling innovation."

Reuse of plastic waste

Plastic and recycling

There is a trend towards plastic recycling in the last years. But a huge share is only recycled by using the plastic purely energetically and the share keeps increasing since 1994. In our view it is better to recycle by reusing the existing material instead of turning it to energy.

1. Material recycling: Collect, shred and remold material or add in a new product as a recyclate.
2. Raw material: Mixed plastic can be heated to create an oil which can be reprocessed into new high quality material. Since this process costs a lot of energy, the use of this recycling method is consistently low.
3. Energetic usage: The very high heat value of plastic can be used in energy-intensive processes. Instead of using fresh crude oil or hard coal, mixed plastic can be used to power blast furnaces. However, this process can emit highly toxic dust, which has to be filtered and deposited properly.


Show more
Energy needed for 1kg of material

Materials and energy demand

When choosing the right material, it is important to consider the entire required energy for production, processing and recycling. The transport route of the material to the actual production site and from there to the customer has to be factored in as well, as this also makes up a large part of the CO2 footprint.

Aluminum consumes a lot of energy when it is first manufactured, but it can be recycled extremely well. Recycling aluminum consumes only one tenth of the energy required for initially producing it. This makes a closed material cycle for materials like this very important.
Other materials like steel and glass can also be produced with little energy and are recyclable with little loss of quality. Only the comparatively high density gives those materials a disadvantage compared to plastics. The term "material-bound energy demand" describes the amount of necessary crude oil for the starting point of plastic or the amount of pulp for the production of paper.

Show more
bio-based plastics

Overview of bioplastic

Particularly noteworthy are the following bio-based plastics:

PLA - polylactide
This common biopolymer is obtained from plant residues, is industrially compostable and almost reaches the characteristics of PET. In material recycling, this material has to be separated from the rest to not  disturb the properties of the other plastics. PLA is used for food packaging and as filament for 3D printing.

PHA - Polyhydroxyalkanoates and PHB - Polyhydroxybutyrate
These bio-based and compostable thermoplastics are often made by bacterial fermentation. PHA blends reaches a yield stress of up to 690 MPa and has a very low water absorption and a strong elongation at break. Due to its high price, PHA is mainly used in the medical industry, i.e. for temprorary implants that can be resorbed by the human body.

CA - Cellulose acetate
This plastic has been on the market already for decades: As artificial silk, in cigarette filters or as impact-resistant handles on hand tools. Although CA is produced using biological processes, its recycling or compostability are very complex.

Show more
Eco Awards


"Will the IF Awards or the RedDot Award soon be history?" Emerging awards such as the Green Product Award focus on other values and challenge product design to come up with innovative solutions. Are you ready for these challenges? We support you in this demanding tasks and are happy to help you to get on the stage of the Eco-Awards.

Eco Labels


Do you wonder if your company is eligible for using eco-labels? Labels can have a positive impact on a product image, its company and helps contributing to sustainability. We gladly support you in fulfilling the requirements.



Our development tools are changing and extending as well. For example, our CAD tool Solid Works offers a module for life cycle assessment support. A reference model provides important information on the impact of CO2, energy and water consumption of the engineered model. Other tools, such as the Ecolizer, also help us to analyze how to preserve resources in a developed products in production, transport or recyclability. We would like to examine together with our customers how the effects of these tools could be used in their product development.

Leichtbaukonstruktion und Bionik

Lightweight engineering & bionics

Lightweight engineering principles enable to save material while maintaining the same component strength. In addition to the cost savings, this is targeted for sustainable products.
The importance of bionics for finding new solutions has also increased drastically  in the last years. Nature finds many ways to preserve resources and energy. By looking at those solutions bionics can show many  innovative ways to solve current problems.

Feel free to contact us

BUSSE Design+Engineering GmbH
Nersinger Straße 18
89275 Elchingen

Fon +49 (0) 7308 811 499 0
Fax +49 (0) 7308 811 499 99


We are looking forward to hearing from you.

Call us:

+49 (0)7308 811 499 0

We are pleased to contact you!

Send us an e-mail to

powered by webEdition CMS